

Development and Mechanisms of Language Impairment in ASD: Parallels with other Language Disorders

Helen Tager-Flusberg, Ph.D. Research Symposium ASHA, Orlando FL November 22, 2014

No Lucrative Financial Disclosures!

Grant funding for research presented today from:

- NIH/NIDCD (RO1/R21)
- Simons Foundation for Autism Research
- Autism Speaks

Overview

- 1. Autism spectrum disorder; language
- 2. Studying high risk infants in first year of life
- 3. Early concerns and language milestones
- 4. Mechanisms:
 - Neural underpinnings of domain general functioning
 - Neural underpinnings of speech perception and language;
 - Maternal contributions
- 5. Comparison to studies of early mechanisms in SLI
- 6. Conclusions

1. Autism Spectrum Disorder

Autism Spectrum Disorder: DSM 5

- 1. Impairments in social communication
- 2. Repetitive behaviors and restricted interests

Communication impairments include:

- Failure in back-and-forth conversation
- Deficits in nonverbal communicative behaviors
- Difficulties adjusting behavior to suit various social contexts

In addition need to specify whether ASD occurs with or without accompanying <u>language impairment</u>

Language in autism

Developmental profiles

- Over 90% delayed language milestones
- About 20 % language regression loss of words, phrases in second year of life (unique to ASD)
- About 25% accelerated language growth in preschool years – catch up to peers (enrolled in El)
- Most significant influence of early intervention: promotes language acquisition

Comprehensive behavioral programs(e.g., ABA; ESDM) Target interventions (e.g., joint attention)

Early intervention: Language outcomes

2. Studying High Risk Infants

Studying early developmental trajectories

- Surge in interest during past decade in studying *infants at risk* for neurodevelopmental disorders –most extensive now for ASD
- 20+ groups from around the world, forming the Baby Sibling Research Consortium
- Compare infant with older sibling with ASD to low risk control
- (And for us, an attempt to have group with an older sibling with SLI....)

Recurrence rate: 18.7% overall

ASD demographic risk factors

- 1. Males > females
- 2. Family history/genetics
- 3. (Parental age)

General findings from infant sibling studies

- ASD manifests as change in developmental trajectories (Ozonoff et al., 2010)
- Behavioral onset of ASD in the second year of life –declines in social engagement (eye contact, social smiles)
- Slowed cognitive development
- Delays in language and gesture at 12 months

Our Infant Sibling Project

- Collaboration between Boston University and Children's Hospital Boston – Charles Nelson
- Time points: 3, 6, 9, 12, 18, 24, and 36 months
- Include wide range of behavioral and observational measures; complement with home video diaries (6-18 months)
- Eye-tracking measures face and language
- Brain measures measures of brain *function*
 - Electrophysiology (EEG; ERP) face & language
 - Near Infra-Red Spectroscopy (fNIRS)

3. Early Concerns and Language Milestones

Concerns at 6 months

Concerns at 9 months

Concerns at 12 months

Infant 12 month gesture use

Early vocalizations @ 12 months

Growth curves: Mullen language scores

4. Mechanisms

Gamma frequency

Frequency (Hz)

- Associated with cognition attention, working memory, learning
- Involved in integrating information in different brain networks, which is required for complex skills

Development of EEG – spectral power

- Baseline/resting state EEG
- Collected at least 2 minutes over frontal regions 6-24 months

Group differences in frontal gamma power

Downloaded From: https://cred.pubs.asha.org/ by ASHA Publications, Frank Wisswell on 11/29/2018 Terms of Use: https://pubs.asha.org/ss/rights_and_permissions.aspx

Excellence

Speech perception

1. Perceptual narrowing at 9-12 months ---related to attending to the linguistic environment, *in social contexts*

Do infants later diagnosed with ASD fail to show perceptual narrowing?

2. Studies of children and adults with ASD (and their relatives) show *atypical brain asymmetry* – non left lateralized for language

Do infants at risk or later diagnosed show atypical lateralization to speech?

Perceptual narrowing study

- Based on Pat Kuhl's research paradigm
- Double oddball procedure:
 - /da/ 80% of time standard
 - /da/ 10% of time non-native contrast
 - /ta/ 10% of time native contrast

Expect at 6 months infants differentiate standard and non-native contrast; by 12 months should not

Late slow wave – sensitive to lateralization/asymmetry

Low risk: Right more negative than left at 9 and 12 months

High risk: No difference at any age

Lateralization of LSW @ 12 months by outcome

Enhanced P150 amplitude to standard /*da*/@9 months in HRA

Correlation between amplitude of P150 Response @ 9 months and expressive language @ 18 months

Brain connectivity in ASD

Anatomical connectivity: fewer long range connections (inter-regional) in children and adults with ASD

Functional connectivity is reduced in ASD, compared to controls - intra- and interhemispheric connectivity

How early do connectivity differences emerge?

Are they specific to ASD outcome infants?

Functional connectivity in infants

- Measured connectivity during speech task
- Metric of functional connectivity was eventrelated coherence in gamma:
 - Measure of similarity between signals in different regions of the brain, which reflects strength of functional connection between two regions: frontal and parietal

Linear coherence at 6 and 12 months

Excellence

12 month data for ASD outcomes

Connectivity analysis using fNIRS

- Auditory processing paradigm: ABB vs. ABC syllables
- Infants listened to 28 blocks of artificial "words" with syllables in either an ABB or ABC pattern (e.g., *penana* vs. *baloti*)
- Infants at high-risk (HRA) and low-risk comparison (LRC) infants were tested at 3-, 6-, 9-, and 12-months

Near-Infrared Spectroscopy (fNIRS)

(courtesy of Aslin Lab, University of Rochester

Same concept as pulse oximetry, but measure OxyHb and DeoxyHb separately

Regions of interest

Findings

Differences in regional connectivity between low and high risk infants

Correlation matrices:

Global connectivity differences between LRC and HRA

Home-based video diaries

- Between 6 and 18 months mothers recorded home videos on a monthly basis
- Recorded interaction with their infant in a series of vignettes (play with novel toys, book reading, toy drop event, social games)
- The videos complement data collected in the lab – naturalistic mother-child interactions

Maternal responses to infants' vocalizations @ 9 Months

Maternal communication @ 12 months during toy drop

Maternal gesture at 12 months

Summary

- Differences in the first year of life in frontal gamma power – related to risk, not outcome
- Atypical neural response cortical organization and reduced neural connectivity in neural systems underlying speech/language – extreme differences found in ASD outcome infants
- <u>No</u> differences in maternal linguistic or gestural behavior

5. Comparisons to SLI

BOSTON UNIVERSITY

SLI: Risk factors and early signs

- 1. Males > females
- 2. Family history
- 3. Parental concerns
- 4. Delays is early gesture use and language milestones
- 5. Slowed growth in language during preschool years

SLI: Neural/cognitive mechanisms

- 1. Lower resting frontal gamma 16-36 months (Benasich et al., 2008)
- 2. Higher rapid auditory processing threshold to tones at 7 months (Benasich & Tallal, 2002)
- 3. Atypical lateralization of response to tone pairs 6-12 months (Choudhury & Benasich 2011)
- 4. Delayed mismatch response to changes in syllable length at 2 months (Friedrich et al., 2004)
- 5. Delayed mismatch response to changes in word stress 4-5 months (Weber et al., 2005)
- 6. Reduced mismatch response to tones at 6 months (Benasich et a., 2006)

6. Conclusions

Gaps and future research

- Many parallels between risk factors and mechanisms for language impairment in ASD and SLI
- Studies of brain development employ different paradigms and measures
- Longitudinal studies highlight developmental trajectories, which may differ across disorders
- Studies of risk may contribute to development and implementation of targeted early or preventive interventions

BOSTON UNIVERSITY

Acknowledgements!

Funding

Autism Speaks Simons Foundation NIDCD

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

Collaborators

Chuck Nelson/Children's

Annie Seery; Adrienne Tierney; Guilia Righi; Meagan Talbott; Brandon Keehn; Karen Chenausky – teams at CARE and LCN

Children and families participating in the projects!

BOSTON UNIVERSITY